Звуковые колебания. Практическое применение. Влияние на человека Какие механические колебания мы воспринимаем как звук

Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 20 Гц до 20 кГц и которые способно воспринимать человеческое ухо.

Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.

Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.

Музыкальный тон. Громкость и высота тона

Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.

Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.

Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спаданием их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.

Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.

Акустический резонанс

Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.

Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.

Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертон 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.

Шумы

Музыкальный звук (ноту) мы слышим тогда, когда колебание периодическое. Например, такого рода звук издает струна рояля. Если одновременно ударить несколько клавиш, т.е. заставить звучать несколько нот, то ощущение музыкального звука сохранится, но отчетливо выступит различие консонирующих (приятных на слух) и диссонирующих (неприятных) нот. Оказывается, что консонируют те ноты, периоды которых находятся отношениях небольших чисел. Например, консонанс получается при отношении периодов 2:3 (квинта), при 3:4 (кванта), 4:5 (большая терция) и т.д. Если же периоды относятся как большие числа, например 19:23, то получается диссонанс – музыкальный, но неприятный звук. Еще дальше мы уйдем от периодичности колебаний, если одновременно ударим по многим клавишам. Звук получится уже шумоподобным.

Для шумов характерна сильная непериодичность формы колебаний: либо это – длительное колебание, но очень сложное по форме (шипение, скрип), либо отдельные выбросы (щелчки, стуки). С этой точки зрения шумам следует отнести и звуки, выражаемые согласными (шипящими, губными и т.д.).

Во всех случаях шумовые колебания состоят из огромного количества гармонических колебаний с разными частотами.

Таким образом, у гармонического колебания спектр состоит из одной-единственной частоты. У периодического колебания спектр состоит из набора частот – основной и кратных ей. У консонирующих созвучий мы имеем спектр, состоящий из нескольких таких наборов частот, причем основные относятся как небольшие целые числа. У диссонирующих созвучий основные частоты уже не находятся в таких простых отношениях. Чем больше в спектре разных частот, тем ближе мы подходим к шуму. Типичные шумы имеют спектры, в которых присутствуют чрезвычайно много частот.

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам удовольствие. Нам приятно слушать человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах , которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Причина звука – вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

КАМЕРТОН - это U-образная металлическая пластина , концы которой могут колебаться после удара по ней. Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии. Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усиления звука. Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора. Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда .

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения, как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой от 16 до 20000 раз в секунду. Такие волны называются звуковыми. Вибрирующее тело может быть твердым, например, струна или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах или жидким, например, волны на воде.

Колебания с частотой меньше 16 Гц называется инфразвуком . Колебания с частотой больше 20000 Гц называются ультразвуком .

Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений (например, в результате колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

Привычное для всех нас понятие «звук» означает всего лишь воспринимаемый слуховым аппаратом человека набор звуковых колебаний. О том, какие колебания человек воспринимает, а какие нет, мы поговорим позднее.

Характеристики звука.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В отношении звуковых волн очень важно упомянуть такую характеристику, как скорость распространения.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Высота, тембр и громкость звука

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

70 дБ – шум пишущей машинки;

80 дБ – шум работающего двигателя грузового автомобиля;

120 дБ – шум работающего трактора на расстоянии 1 м

130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Частота зв уковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разны х источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наиболь шего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окрас ку, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретно го голоса.

Согласно легенде, Пифаго р все музыкальные звуки расположил в ряд, разбив этот ряд на части – октавы, – а

октаву – на 12 частей (7 основных то нов и 5 полутонов). Всего насчитывается 10 октав, обычно при исполнении музыкальных произведений используются 7–8 октав. Звуки частотой более 3000 Гц в качестве музыкальных тонов не используются, они слишком резки и пронзительны.

Вопросы.

1. Расскажите об опытах, изображенных на рисунках 70-73. Какой вывод из них следует?

В первом опыте (рис. 70) зажатая в тиски металлическая линейка издает звук при ее колебании.
Во втором опыте (рис. 71) можно наблюдать колебания струны, которая при этом тоже издает звук.
В третьем опыте (рис. 72) наблюдается звучание камертона.
В четвертом опыте (рис. 73) колебания камертона "записываются" на закопченую пластинку. Все эти опыты демонстрируют колебательный характер возникновения звука. Звук появляется в результате колебаний. В четвертом опыте это можно еще и наглядно наблюдать. Острие иглы оставляет след в виде близком к синусоиде. При этом звук не появляется ниоткуда, а порождается источниками звука: линейкой, струной, камертоном.

2. Каким общим свойством обладают все источники звука?

Любой источник звука обязательно колеблется.

3. Механические колебания каких частот называются звуковыми и почему?

Звуковыми называются механические колебания с частотами от 16 Гц до 20 000 Гц, т.к. в данном частотном диапазоне они воспринимаются человеком.

4. Какие колебания называются ультразвуковыми? инфразвуковыми?

Колебания с частотами более 20 000 Гц называются ультразвуковыми, а с частотами ниже 16 Гц - инфразвуковыми.

5. Расскажите об измерении глубины моря методом эхолокации.

Упражнения.

1. Звук от взмахов крыльев летящего комара мы слышим. а летящей птицы - нет. Почему?

Частота колебаний крыльев комара 600 Гц (600 взмахов в секунду), воробья 13 ГЦ, а человеческое ухо воспринимает звуки от 16 Гц.

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

Раздел физики, занимающийся звуковыми колебаниями, называется акустикой.

Человеческое ухо устроено так, что оно воспринимает колебания частотой от 20 Гц до 20 кГц как звук. Низкие частоты (звук от большого барабана или органной трубы) воспринимаются ухом как басовые ноты. Свист или писк комара соответствуют высоким частотам. Колебания частотой ниже 20 Гц называются инфразвуком , а частотой свыше 20 кГц - ультразвуком. Такие колебания человек не слышит, но есть животные, которые слышат инфразвуки, исходящие от земной коры перед землетрясением. Услышав их, животные покидают опасную местность.

В музыке акустические частоты соответствуют нотам. Нота «ля» основной октавы (ключ С) соответствует частоте 440 Гц. Нота «ля» следующей октавы соответствует частоте 880 Гц. И так все остальные октавы отличаются по частоте ровно в два раза. Внутри каждой октавы различают 6 тонов или 12 полутонов. Каждый тон имеет частоту в yf2 ~ 1,12 отличающуюся от частоты предыдущего тона, каждый полутон отличается от предыдущего в "$2 . Мы видим, что каждая следующая частота отличается от предыдущей не на сколько-то Гц, а в одинаковое число раз. Такая шкала называется логарифмической, так как равное расстояние между тонами будет именно на логарифмической шкале, где откладывается не сама величина, а ее логарифм.

Если звук соответствует одной частоте v (или со = 2tcv), то его называют гармоническим, или монохроматическим. Чисто гармонические звуки встречаются редко. Почти всегда звук содержит набор частот, т. е. его спектр (см. раздел 8 настоящей главы) сложен. Музыкальные колебания всегда содержат основной тон ссо = 2я/Т, где Т - период, и набор обертонов 2(Оо, Зсо 0 , 4соо и т. д. Набор обертонов с указанием их интенсивностей в музыке называется тембром. У разных музыкальных инструментов, у разных певцов, берущих одну и ту же ноту, тембр разный. Это придает им разную окраску.

Возможна примесь и некратных частот. В классической европейской музыке это считается неблагозвучным. Однако в современной музыке это используется. Даже используется медленное движение каких-либо частот в сторону увеличения или уменьшения (гавайская гитара).

В немузыкальных звуках возможны любые комбинации частот в спектре и их изменение во времени. Спектр таких звуков может быть сплошным (см. раздел 8). Если интенсивности для всех частот приблизительно одинаковы, то такой звук называют «белый шум» (термин взят из оптики, где белый цвет - совокупность всех частот).

Очень сложны звуки человеческой речи. Они имеют сложный спектр, который быстро меняется со временем при произнесении одного звука, слова и всей фразы. Это придает звукам речи различные интонации и акценты. В результате можно по голосу отличить одного человека от другого, даже если они произносят одни и те же слова.