Для измерения силы применяют. Единицы силы. Динамометр. Приборы для измерения силы

Определение силы в неявной форме содержится в трех законах движения Ньютона.

1. Всякое тело пребывает в состоянии покоя или равномерного и прямолинейного движения, пока какие ни будь силы не выведут его из этого состояния.

2. Ничем не уравновешенная сила сообщает телу ускорение в том направлении, в котором она действует. Это ускорение пропорционально силе и обратно пропорционально массе тела.

3. Если тело А действует с некоторой силой на тело В , то тело В действует с такой же, но противоположно направленной силой на тело А .

На основе второго закона Ньютона определяют единицу силы как произведение массы на ускорение (F = ma). Существует и другая формулировка второго закона Ньютона. Количество движения тела равно произведению его массы на скорость его движения, так что ma - это скорость изменения количества движения. Сила, действующая на тело, равна скорости изменения его количества движения. Есть разные способы измерения силы. Иногда для этого достаточно уравновесить силу грузом или определить, насколько она растягивает пружину. Иногда силы можно вычислить из других наблюдаемых величин, например, ускорений, при рассмотрении прыжков или метаний снарядов. В других случаях лучше всего использовать один из многочисленных электрических приборов, известных под названием механоэлектрических преобразователей. Эти приборы под действием приложенных сил генерируют электрические сигналы,

которые можно усилить и зарегистрировать в виде какой-либо записи и преобразовать в величины силы.

Сила действия человека зависит от состояния данного человека и его волевых усилий, то есть стремления проявить ту или иную величину силы, в частности, максимальную силу, а также от внешних условий, в частности, от параметров двигательных заданий, например, суставных углов в биоцепях тела.

От уровня развития силовых качеств зависят достижения практически во всех видах спорта, и поэтому методам контроля и

совершенствования этих характеристик уделяется значительное внимание.

Способы измерения силы

Методы контроля силовых качеств имеют давнюю историю.

Первые механические устройства, предназначенные для измерения силы человека, были созданы еще в XVIII в. При контроле силовых качеств обычно учитывают три группы показателей.

1. Основные: а) мгновенные значения силы в любой момент движения (в частности, максимальная сила); б) средняя сила.

2. Интегральные, такие как импульс силы.

3. Дифференциальные, например, градиент силы.

Максимальная сила весьма наглядна, но в быстрых движениях сравнительно плохо характеризует их конечный результат (например, корреляция максимальной силы отталкивания и высоты прыжка может быть близка к нулю).

Согласно законам механики конечный эффект действия силы, в

частности, усилие, достигнутое в результате изменения скорости движения тела, определяется импульсом силы. Если сила постоянна, то импульс - это произведение силы на время ее действия (Si =F· t ). В других условиях, например, при ударных взаимодействиях, расчеты импульса силы проводятся путем интегрирования, поэтому показатель называется интегральным. Таким образом, наиболее информативен импульс силы при

контроле ударных движений (в боксе, по мячу и т. п.).

Средняя сила - это условный показатель, равный частному от деления импульса силы на время ее действия. Введение средней силы равносильно предположению, что на тело в течение того же времени действовала постоянная сила (равная средней).

Различают два способа регистрации силовых качеств:

1) без измерительной аппаратуры (в этом случае оценка уровня силовой подготовленности проводится по тому максимальному весу, который способен поднять или удержать спортсмен);

2) с использованием измерительных устройств - динамометров

или динамографов.

Все измерительные процедуры проводятся с обязательным

соблюдением общих для контроля физической подготовленности

метрологических требований. Необходимо также строго

соблюдать специфические требования к измерению силовых

1) определять и стандартизировать в повторных попытках

положение тела (сустава), в котором проводится измерение;

2) учитывать длину сегментов тела при измерении моментов

3) учитывать направление вектора силы.

Контроль силовых качеств без измерительных устройств . В массовом спорте об уровне развития силовых качеств часто судят по результатам соревновательных или тренировочных упражнений. Существует два способа контроля: прямой и косвенный . В первом случае максимум силы соответствует тому наибольшему весу, который может поднять спортсмен в технически сравнительно простом движении (например, жиме штанги лежа). Во втором случае измеряют не столько абсолютную силу, сколько скоростно-силовые качества или силовую выносливость. Для этого используют такие упражнения, как прыжки в длину и высоту с места, метание набивных мячей, подтягивания и т. п.

В инерциальной системе отсчета изменение скорости тела может быть обусловлено только его взаимодействием с другими телами. Для описания взаимодействия между телами вводится физическая величина - сила, дающая количественную меру этого взаимодействия.

Виды сил. Физическая природа взаимодействия может быть различной: существуют гравитационные, электрические, магнитные и другие взаимодействия. В механике физическая природа сил, вызывающих ускорение тела, совершенно несущественна: вопрос о происхождении взаимодействий в механике не ставится и не выясняется. Но для всех видов взаимодействий количественная мера может быть выбрана единым образом - измерять силы различной природы можно в одних и тех же единицах с помощью одних и тех же эталонов. Благодаря такой универсальности механика успешно описывает движения под действием сил любой природы.

Таким образом, определение силы в механике должно отвечать только на вопрос, как измерить силу и каковы ее свойства.

Измерение сил. Существуют различные способы измерения сил. Один из наиболее распространенных способов основан на свойстве сил вызывать упругую деформацию твердых тел.

Деформация твердого тела, например пружины, называется упругой, если тело принимает первоначальные форму и размеры после снятия усилия, вызывающего деформацию. Простейший прибор для измерения сил - это пружинный динамометр. Некоторые модификации этого прибора, например крутильные весы, обладают очень высокой чувствительностью (см., например, рис. 93). Такие весы представляют собой один из самых совершенных физических приборов. С помощью крутильных весов равенство инертной и гравитационной масс, о которых будет идти речь ниже, было установлено с относительной погрешностью, равной 10-12. Такая точность эквивалентна возможности заметить изменение массы корабля водоизмещением в 1000 тонн при добавлении к нему 1 миллиграмма.

Для измерения сил на основе явления упругой деформации можно поступить следующим образом. Выберем и качестве эталона

некоторую пружину и по определению будем считать, что при растяжении на некоторую заданную длину пружина действует на прикрепленное к ее концу тело с силой направленной вдоль оси пружины. Будем также считать, что две любые силы равны и противоположно направлены, если при одновременном действии только этих двух сил тело в инерциальной системе отсчета остается в покое или движется равномерно и прямолинейно. В соответствии с этим определением эталон силы можно воспроизвести в любом числе экземпляров.

Градуировка динамометра. Имея в распоряжении эталонную пружину, можно установить, имеет ли измеряемая сила значение но еще нельзя измерить любую силу. Для того чтобы получить способ измерения любых сил, попробуем сначала добиться того, чтобы тело в инерциальной системе отсчета оставалось в покое при одновременном действии на него трех эталонных сил

Рис. 62. Равновесие при действии трех одинаковых сил

Опыт показывает, что это возможно только в том случае, когда пружины расположены симметрично: их оси лежат в одной плоскости, образуя углы 120° друг с другом (рис. 62 а). Отсюда можно сделать вывод, что действие двух сил под углом 120° друг к другу эквивалентно действию одной силы направленной по диагонали параллелограмма (ромба), построенного на этих силах (рис. 62 б). В этом параллелограмме длина меньшей диагонали равна длине стороны.

Обобщим этот результат и будем считать, что действие на тело двух эталонных сил расположенных под любым углом друг к другу эквивалентно действию одной силы, модуль и направление которой задаются диагональю параллелограмма, построенного на действующих силах как на сторонах. Другими словами, мы предполагаем, что две эталонные силы складываются, как векторы. Эта гипотеза дает возможность проградуировать прибор для измерения

сил - динамометр (рис. 63). Силе уравновешивающей совместное действие двух эталонных сил направленных под углом а друг к другу, мы приписываем модуль и направление, указанное на рисунке.

Сила - вектор. Имея в распоряжении проградуированный динамометр, остается только убедиться на опыте, что все силы, независимо от их физической природы, складываются, как векторы. Действительно, силы упругости, на основе которых создан прибор для измерения сил - динамометр, складываются, как векторы, по принятому определению. Для всех остальных сил такое свойство должно проверяться на опыте.

Пусть, например, на стальной шарик (рис. 64) действуют две силы: сила упругости со стороны динамометра и магнитная сила со стороны постоянного магнита М.

Рис. 63. Сложение сил и градуировка динамометра

Рис. 64. Сложение сил разной физической природы

Силу если бы она действовала отдельно, можно измерить с помощью динамометра. Поэтому можно считать, что в рассматриваемом опыте ее значение известно. При одновременном действии сил и опыт покажет, что шарик будет оставаться в покое, если на него подействовать еще и третьей силой со стороны другого динамометра которая удовлетворяет равенству

На основании описанных свойств можно заменять несколько сил их равнодействующей, равной их векторной сумме, и наоборот,

всякую силу можно раскладывать на составляющие, векторная сумма которых равна данной силе.

Введенный способ измерения сил дает возможность изучать на опыте свойства сил разной физической природы. При этом оказывается, что некоторые виды сил зависят от взаимного расположения взаимодействующих тел. К таким силам относятся, например, гравитационные силы, силы взаимодействия неподвижных электрических зарядов, силы взаимодействия постоянных магнитов и т. д. Другие виды сил зависят от относительной скорости взаимодействующих тел. К таким силам относятся, например, сила трения, силы, действующие со стороны постоянного магнита на движущиеся электрические заряды, и т. д. Однако независимо от этих специфических для каждого вида сил свойств все силы обладают одним универсальным свойством - сообщать ускорение телам, на которые они действуют.

В каком случае действующие на тело силы считаются одинаковыми?

Какими достоинствами обладает метод измерения сил, основанный на упругой деформации твердых тел?

Как можно на опыте установить, что действующая на стальной шарик со стороны постоянного магнита сила является вектором?

Что значит разложить силу на составляющие? Когда это можно делать? Как могут быть направлены эти составляющие?

Силой называют количественную характеристику процесса взаимодействия объектов (например, сила трения).

Понятие «масса» характеризует инерционность объектов и их гравитационную способность.

В измерениях, обычно, не делают отличия между массой (количеством вещества) и весом - силой притяжения тела Землей (гравитационной силой), поэтому для измерения силы и массы-веса применяют одни и те же методы измерения.

Приборы для измерения массы по гравитационной способности объекта называют весами . Измерение силы осуществляют посредством динамометров . Разделение средств измерений силы на весы и динамометры обусловлено тем, что направление вектора гравитационной силы строго определено в пространстве. Это обстоятельство учитывают при конструировании средств измерений гравитационной силы, а также при подготовке весов к работе. В частности, в конструкции весов предусматривают уровни и отвесы, позволяющие установить их в горизонтальное положение с требуемой точностью. Рабочее положение динамометров может быть любым – главное, чтобы линия измерения совпадала с направлением вектора силы. При соблюдении этого условия весы могут быть использованы для измерения негравитационной силы, а динамометры – для определения веса. Таким образом, разделение средств измерений силы на весы и динамометры определяется их назначением.

Измерение силы. В общем случае динамометры состоят из преобразователя силы – упруго деформируемого элемента, преобразователя деформации при необходимости, и показывающего прибора.

Динамометры (динамометр от греческого dynamis - сила и метр) изготовляют трёх типов: ДП - пружинные, ДГ- гидравлические, ДЭ - электрические.

Многообразие конструкций упругих элементов можно классифицировать в зависимости от вида реализуемой деформации : использующие деформации сжатия или растяжения, деформацию изгиба, деформацию сдвига и смешанную деформацию (рис.61)

Динамометрические пружины растяжения или сжатия обычно выполнены в виде сплошного или полого цилиндра, иногда в виде стержня прямоугольного сечения (от 10 кН до 1 МН).

Рис.61. Преобразователи силы в деформацию: а) сжатия, б) изгиба, в) сдвига, г) смешанную

Деформация изгиба реализуется также в упругих элементах, выполненных в виде системы из радиально размещенных балок, колец, мембран, рамы и т.п. (от 10 Н до 10 кН – рабочие средства). Для кольцевых элементов до 2 МН.

Динамометры со сложным упругим элементом (рис. 3г) призваны приблизить характеристику преобразования к линейной и широко применяются в качестве рабочих и эталонных средств измерения.

Механические динамометры применяют только для измерения статических сил. Деформацию чувствительного элемента (0,1 – 2 мм) измеряют индикатором часового типа или индикаторной головкой. Механические динамометры выпускаются серийно для нагрузок до 10 МН. Класс точности достигает 0,1 – 2 %.

Для упругих элементов большой жесткости (стержневых) применяют тензорезисторные и струнные преобразователи деформации в электрический сигнал. При малой жесткости (кольцевые, упругие балочные элементы) применимы емкостные, индуктивные и другие преобразователи.

Среди электрических динамометров наибольшее значение имеют тензорезисторные. Диапазон их применения от 5 Н до 10 МН и более. Чувствительный элемент таких динамометров выполняют в виде стержня, трубы, радиально нагруженного кольца, сдвоенной балки, консольной торсионной балки и др. Наклеенный на чувствительный элемент тензорезистор регистрирует деформации растяжения – сжатия, изгиба, кручения, среза. Тензорезисторные динамометры пригодны как для статических, так и для динамических измерений.

В струнных динамометрах применяют струнный тензометр. Чувствительным элементом является ферромагнитная струна, расположенная вдоль оси упругого полого цилиндра и связанная с ним двумя плоскостями. При приложении к цилиндру нагрузки вследствие его деформации одновременно меняется натяжение струны и частота её колебаний, возбуждаемых электромагнитом. Собственная частота колебаний влияет на значение напряжения на выводах измерительной катушки и является мерой нагрузки. Диапазон сил от 200 Н до 5 МН. Класс точности 1 %.

При измерении больших нагрузок (до 50 МН) находят применение магнитоупругие преобразователи.

В основе магнитоупругих динамометров – ферромагнитные материалы (например, железоникелевые сплавы), которые изменяют свою магнитную проницаемость в направлении воздействия на них силы растяжения или сжатия. Магнитоупругий динамометр может быть выполнен в виде катушки с замкнутым сердечником из магнитомягкого материала. Изменение индуктивности, возникающее при нагружении, может быть измерено электрическими методами (рис. 62). Класс точности магнитоупругих динамометров от 0,1 до 2%.

Рис. 62. Схема включения магнитоупругого динамометра

Пьезоэлектрические динамометры применяют для измерения динамических и квазистатических сил (непригодны для статически сил). Класс точности 1%.

Действие силы может быть преобразовано в изменение давления (гидравлические динамометры). Гидравлическая система измерения сил включает воспринимающее устройство с полностью замкнутой камерой и показывающий прибор. Сила, действующая на поршень, создает давление. В качестве показывающего прибора принципиально могут быть применены все измерители давления (манометры). Чаще всего используют механические приборы. Номинальные силы от 200 Н до 20 МН. Класс точности 1 – 2 %.

Погрешности динамометров обусловливаются следующими причинами: нелинейностью характеристики преобразования, её воспроизводимостью, гистерезисом, температурной зависимостью чувствительности и положения нуля, ползучестью (упругое последействие).

Основные параметры и размеры динамометров общего назначения , пружинных со шкальным и цифровым отсчётным устройством, предназначенных для измерений статических растягивающих усилий, устанавливает ГОСТ 13837 «Динамометры общего назначения. Технические условия».

Пределы измерения динамометров, предусмотренные стандартом: наибольший от 0,10 до 500 кН, наименьший - 0,1 от наибольшего предела.

ГОСТ 13837-79 предусматривает изготовление динамометров классов точности 0,5, 1 и 2. Класс точности определяется пределом допускаемой основной погрешности динамометра, представленным в виде приведенной погрешности. Нормирующее значение при этом равно наибольшему пределу измерений.

Пределы дополнительной погрешности динамометров, вызванной изменением температуры окружающей среды, в рабочем диапазоне температур, отличных от температуры нормальных условий, составляют: не более 0,5 основной погрешности на каждые 10 °С - для динамометров 1-го класса; не более 0,25 основной погрешности на каждые 10 °С - для динамометров 2-го класса.

Для градуировки, поверки и калибровки преобразователей силы используют силоизмерительные машины/установки а также средства измерений, в состав которых входят эталонные динамометры и силозадающие устройства (прессы). По функциональному назначению перечисленные устройства относятся к мерам силы.

Силоизмерительные машины/установки позволяют воспроизводить любые значения силы в установленном диапазоне или ряд дискретных значений.

В зависимости от конструктивной реализации различают машины непосредственного нагружения, силоумножающие установки (рычажные, гидравлические и клиновидные) и установки деления силы.

Непосредственное нагружение реализуется с помощью грузов и гравитационной силы Земли.

Создание силоумножающих установок обусловлено тем, что при больших значениях силы непосредственное нагружение приводит к увеличению погрешностей и металлоемкости, большим экономическим издержкам. Однако и в силоумножающих установках значение силы изначально задается с помощью грузов, которое затем увеличивается с помощью неравноплечих рычагов (до 1МН ), поршневых пар разных эффективных площадей (до 10 МН ) или эффекта клина (до 5 МН?).

Для уменьшения силы могут быть использованы те же конструктивные решения, что и для увеличения, но с передаточным отношением меньше 1. Однако такое решение экономически не выгодно и имеет ограниченные функциональные возможности. Наиболее приемлемым решением для деления силы является устройство с изменением угла наклона оси цилиндрической массы, взвешенной в аэростатическом подвесе (рис.63).

В качестве силозадающих устройств применяют винтовые, рычажные, гидравлические, электромеханические и т.п. прессы. Одно из основных требований к силозадающим средствам – постоянство задаваемого значения силы во времени.

Измерение массы. При взвешивании гравитационную силу сравнивают с известной силой, создаваемой следующими способами:

Грузом известной массы (классический метод);

Растяжением/сжатием пружины (пружинные весы)

Деформированием жестких упругих элементов (деформации измеряют электрическими методами (электромеханические весы);

Пневматическим или гидравлическим устройством (измеряют давление воздуха или жидкости);

Электродинамически при помощи соленоидной обмотки, находящейся в постоянном магнитном поле (измеряемой величиной является ток);

Погружением тела в жидкость (глубина погружения зависит от массы тела).

В этой связи различают весы механические (рычажные, пружинные, поршневые), электромеханические (с емкостными, тензорезисторными, индуктивными и пьезоэлектрическими преобразователями перемещений или деформаций), оптико-механические (с зеркальным или интерференционным указательным устройством), радиоизотопные (абсорбционные и рассеянного излучения). Основное применение находят механические и электромеханические весы.

Требования к весам для статического взвешивания устанавливает ГОСТ 29329 – 92.

Весы для статического взвешивания классифицируют по следующим признакам.

По области применения (эксплуатационному назначению) весы подразделяют на: вагонные; вагонеточные; автомобильные; монорельсовые; крановые; товарные; для взвешивания скота; для взвешивания людей; элеваторные; для взвешивания молока; багажные; торговые; медицинские; почтовые.

По точности взвешивания весы по точности разделяют на 4 класса: 1 класс - весы специальной точности; 2 класс - высокой точности; 3 класс - средней точности; 4 класс - обычной точности. Стандарт ГОСТ 29329 – 92распространяется на весы неавтоматического действия среднего и обычного классов точности.

По способу установки на месте эксплуатации весы подразделяют: встроенные, врезные (врезные весы – передвижные весы, платформа которых находится на одном уровне с полом помещения), напольные, настольные, передвижные, подвесные, стационарные.

По виду уравновешивающего устройства различают весы: механические, электромеханические (электронные - термин «Электронные весы» применим к настольным весам).

Механические весы - весы, в которых уравновешивание силы тяжести осуществляется с помощью различных механизмов. Различают весы гирные, пружинные, гидравлические, пневматические. Весы, в которых передаточным устройством является рычаг или система рычагов называют рычажными.

Электромеханические весы - весы с уравновешивающим устройством в виде преобразователя, в котором сила тяжести преобразуется в электрический сигнал.

По виду грузоприемного устройства различают весы: бункерные, монорельсовые, ковшовые, конвейерные, крюковые, платформенные.

По способу достижения положения равновесия различают весы: с автоматическим уравновешиванием, с полуавтоматическим уравновешиванием, с неавтоматическим уравновешиванием.

В зависимости от вида отсчетного устройства различают весы: с аналоговым отсчетным устройством (циферблатные и шкальные), с дискретным отсчетным устройством (цифровые).

Стандартом ГОСТ 29329-92 предусмотрены следующие основные характеристики весов .

Цена поверочного деления е - условное значение, выраженное в единицах массы и характеризующее точность весов.

Цена поверочного деления для класса точности «средний» 0,1 г ≤ е ≤ 2 г при числе поверочных делений n = 100…10000 и е ≥5 г при n = 500…10000; для класса точности «обычный» е ≥5 г при n = 100…1000. (n - число поверочных делений, определяемое как отношение наибольшего предела взвешивания весов к цене поверочного деления).

Значения цены поверочного деления (е ), цены деления шкалы (d ) и дискретности отсчета (d d ) в единицах массы выбирают из ряда: 1×10 а; 2×10 а и 5×10 а, где а - целое положительное, целое отрицательное числа или нуль. Цена поверочного деления весов без вспомогательного отсчетного устройства должна соответствовать цене деления шкалы для весов с аналоговым отсчетным устройством и дискретности отсчета для весов с цифровой индикацией.

Значение цены деления или дискретности отсчета массы, а также значение цены поверочного деления указывают на весах или в эксплуатационной документации на них.

Наибольший (НПВ) и наименьший (НмПВ) пределы взвешивания весов – наибольшее и наименьшее значения массы, при которых обеспечивается соответствие весов требованиям нормативных документов.

Наибольший предел взвешивания весов (НПВ), предусмотренный ГОСТ 29329-92,составляет от 200 г до 500 т (ряд значений НПВ не соответствует рядам предпочтительных чисел).

Наименьший предел взвешивания - для класса точности средний принимают равным 20·е; для класса точности обычный - 10·е . Где е – цена поверочного деления.

Пределы допускаемой погрешности весов нормируют в зависимости от НмПВ и класса точности и составляют от 0,5∙е до 1,5∙е при первичной поверке на предприятиях: изготовителе и ремонтном. При эксплуатации и после ремонта на эксплуатирующем предприятии - от 1,0∙е до 2,5∙е. Пределы допускаемой погрешности устройства установки на нуль - ± 0,25 е .

Различают следующие типы рычажных весов для измерения массы: лабораторные (аналитические, квадрантные, электронные, равноплечие), настольные циферблатные, счетные коромысловые, платформенные передвижные (шкальные, циферблатные, почтовые).

Принцип действия рычажных весов состоит в уравновешивании момента, создаваемого гравитационной силой от измеряемой массы, моментом силы тяжести гири или груза.

В рычажных весах реализованы следующие варианты преобразователей:

С переменной уравновешивающей массой: рычаг со шкалой и гирями; рычаг с накладными гирями;

С переменной длиной рычага: рычаг с передвижными гирями; рычаг с роликовым грузом;

С переменным углом отклонения: квадрант; противовес.

Требования к параметрам весов рычажных общего назначения устанавливает ГОСТ 14004.

В зависимости от наибольшего предела взвешивания весы общего назначения делят на три группы: -настольные (до 50 кг); -передвижные и врезные (50 – 6000 кг); -стационарные (вагонные, автомобильные, элеваторные) (от 5000 до 200000 кг).

Наименьший предел взвешивания 20 d (d-цена деления шкалы) для настольных весов и 5% от P max для остальных.

Рычажные весы применяют совместно с гирями, которые в зависимости от назначения подразделяют на гири общего назначения, эталонные и специального назначения. В последнюю группу входят гири рейтерные (применяются для повышения точности отсчета лабораторных весов), условные гири (предназначены для комплектации весов и других устрой с отношением плеч рычажной системы 1:100), гири, встроенные в весы, и гири, применяемые в технологических весах и дозаторах.

Конструктивно гири общего назначения выполняют в виде проволочки, многоугольной пластины (треугольной, квадратной или пятиугольной), цилиндра с головкой, параллелепипеда. Номинальное значение массы гири принимают из ряда значений 1·10 n , 2·10 n , 5·10 n (n - любое целое положительное или отрицательное число). Стандарт ГОСТ 7328 – 2001 «Гири. Общие технические условия» предусматривает выпуск гирь массой от 1 мг до 5000 кг. В зависимости от допуска на изготовление гирям присваивают классы точности: Е 1 , Е 2 , F 1 , F 2 , М 1 , M 2 , M 3 (в порядке уменьшения точности). Гири могут поставляться в виде наборов, состав которых формируется в соответствии с рекомендациями ГОСТ 7328 – 2001.

Пример условного обозначения в документации гири массой 500 г класса точности F 1: Гиря 500 г F 1 ГОСТ 7328-2001. Набор гирь: Набор (1 мг – 1 кг) Е 2 ГОСТ 7328 – 2001.

В пружинных весах чувствительным элементом является пружина (сжатия, растяжения, спиралевидная и др.), деформация которой пропорциональна силе тяжести. Значение деформации измеряется непосредственно или подвергается дополнительному преобразованию.

В электронных весах в качестве первичного преобразователя находят применение два основных типа датчиков: пьезокварцевые и тензорезисторные.

Отдельную группу составляют весы для взвешивания транспортных средств в движении . Общие технические требования к ним приведены в ГОСТ 30414-96.

Стандарт распространяется на весы, предназначенные для взвешивания в движении или для статического взвешивания и взвешивания в движении следующих транспортных средств: железнодорожных вагонов (включая цистерны), вагонеток, составов из них, автомобилей, прицепов, полуприцепов (включая цистерны), автопоездов.

Таблица 7. Механические рычажные весы

В зависимости от конструкции грузоприемного устройства оно может определять нагрузку сразу от всего вагона (вагонетки, автомобиля, прицепа, полуприцепа) или автономно - одновременно или поочередно - от каждой тележки, колесной пары (оси) или от каждого колеса.

В зависимости от нормируемых значений метрологических характеристик весы подразделяют на четыре класса точности: 0,2; 0,5; 1; 2. Обозначение класса точности соответствует погрешности допускаемой при эксплуатации. При этом в диапазоне от НмПВ до 35% НПВ включительно – это приведенная погрешность, нормирующее значение для которой равно 35% НПВ. В диапазоне свыше 35% НПВ до НПВ класс точности определяет относительную погрешность измерения.

При первичной поверке или калибровке допустимые погрешности уменьшают в 2 раза.

Измерение расхода

Расходом называют количество вещества, протекающее через данное сечение трубопровода в единицу времени. Различают объемный и массовый расходы. Средства измерений расхода называют расходомерами . Многообразие расходомеров определяется не только конструктивными решениями, но и принципами действия, которые в них реализованы. Рассмотрим наиболее применяемые варианты.

Объемные счетчики. Принцип действия объемных счетчиков основан на непосредственном отмеривании объемов измеряемой среды с помощью мерных камер известного объема и подсчете числа порций, прошедших через счетчик. Наиболее распространенным объемным счетчиком жидких веществ является счетчик с овальными шестернями (рис. 64) Овальные шестерни 1 и 2, размещенные в корпусе 3, вращаются за счет перепада давлений Р 1 и Р 2 . За один оборот шестерен измерительные полости, объем которых точно известен V 1 и V 2 , дважды наполняются и дважды опорожняются. Ось одной из шестерен вращает счетный механизм, расположенный вне корпуса 3. Счетчик характеризуется высокой точностью измерения (погрешность 0,5…1 %), малой потерей давления, независимостью показаний от вязкости, значительным вращающим моментом. Недостатком этих счетчиков является необходимость хорошей фильтрации измеряемой среды, а также высокий уровень акустического шума.

Рис. 64. Схема счетчика с овальными шестернями

Для измерения газовых потоков применяют ротационные газовые счетчики, принцип действия которых аналогичен принципу действия счетчиков с овальными шестернями. Они применяются для измерения расходов от 40 до 40000 м/ч и имеют класс точности 2 и 3.

К числу объемных счетчиков для измерения расхода жидкости относятся лопастные счетчики , характеризуемые верхним пределом измерений 100…300 м/ч и классами точности 0,25 и 0,5.

Скоростные счетчики позволяют установить величину расхода по зависимости частоты вращения аксиальной или тангенциальной турбинки от объемного расхода потока. Если к турбинке (рис. 65) последовательно подключить тахогенератор и вольтметр, то по показанию вольтметра можно судить о скорости потока. А можно подключить счетчик оборотов и измерять расход за определенный отрезок времени. Классы точности приборов 1; 1,5; 2 при расходах 3…1300 м/ч.

На рисунке 65 показан также скоростной счетчик с тангенциальной турбинкой 1. (Цифрой 2 обозначен фильтр.) Такие счетчики применяют при расходе до 3…20 м/ч и имеют класс точности 2 и 3.

Дроссельные расходомеры. Одним из самых распространенных принципов измерения расхода жидкостей, газа и пара является принцип переменного перепада давления на сужающем устройстве.

Преимуществами этого метода являются: простота и надежность, отсутствие движущихся частей, низкая стоимость, возможность измерения практически любых расходов, возможность получения градуировочной характеристики расходомеров расчетным путем.


Рис. 65. Схема скоростного счетчика с аксиальной и тангенциальной турбинками.

1 - струевыпрямитель, 2 - передаточный механизм, 3 - счетное устройство, 4 – камера, 5 – червячная пара, 6 – турбинка.

В соответствии с изложенным принципом в трубопровод устанавливают сужающее устройство. Скорость потока через отверстие сужающего устройства выше, чем до него, вследствие чего на сужающем устройстве создается перепад давления, измеряемый дифференциальным манометром. Показания дифференциального манометра зависят от скорости потока в сужении или от расхода потока. Схемы стандартных сужающих устройств и места подключения ветвей дифференциального манометра показаны на рисунке 66.

Рис. 66 Схемы сужающих устройств: а) диафрагма, б) стандартное сопло, в) сопло Вентури, г) труба Вентури

Расходомеры обтекания (ротаметры). В этих расходомерах обтекаемое тело (поплавок, поршень, клапан, поворачивающаяся пластинка, шарик и др., примеры на рисунках 67 и 68) воспринимает со стороны набегающего потока силовое воздействие, которое при возрастании скорости потока увеличивается и перемещает обтекаемое тело. В качестве противодействующей силы служит вес обтекаемого тела или сила пружины. Расходомеры конструируются таким образом, что перемещение обтекаемого тела сопровождается изменением площади проходного сечения для прохода жидкости или газа. При этом увеличение скорости потока приводит к увеличению проходного сечения. Вследствие чего скорость потока уменьшается. Такая отрицательная обратная связь приводит к стабилизации положения обтекаемого тела. Выходным сигналом рассматриваемых преобразователей расхода является перемещение обтекаемого тела.

Рис. 67. Схемы преобразовательных элементов расходомеров обтекания а) поплавковый, б) клапанный, в) поршневой

Рис. 68. Схемы расходомеров обтекания: а), б) – поплавкового типа; в), г) – клапанного типа; д) – поршневого типа.

Обозначения на рисунках.

Рисунок а: 1 – стеклянная коническая трубка, 2 – поплавок, 3 – ограничитель хода поплавка, 4 – шкала.

Рисунок б: 1 – цилиндрический поплавок с отверстием по середине, 2 – неподвижный стержень конического сечения, 3 – стеклянная цилиндрическая трубка.

Рисунок в: 1 – клапан, 2 – кольцевая диафрагма, 3 – металлический корпус, 4 – шток, 5 – сердечник дифференциально-преобразовательного элемента 7, 6 – трубка из немагнитной стали.

Рисунок г: 1 – пневмодроссель, 2 – пневматическое сопло, 3 – магнит, 4 – трубка из немагнитного материал, 5 – сердечник, 6 – клапан, 7 – сильфон.

Рисунок д: 1 – грузы, 2 – поршень, 3 - сердечник, 4 – индукционная катушка, 5 – канал подвода выходного давления в надпоршневое пространство, 6 – выходное отверстие прямоугольной формы из подпошневого пространства.

Ротаметры с выходным пневматическим сигналом 0,02 ..0,1 МПа выпускают классов точности 1,5 и 2,5.

Кроме перечисленных видов для измерений расходов используются расходомеры переменного уровня, электромагнитные, тепловые (калориметрические) и другие расходомеры.

Литература

1.Раннев Г.Г., Тарасенко А.П. Методы и средства измерений.- 2004.

2.Бриндли К. Измерительные преобразователи. Справочное пособие.- 1991.

3.Козлов М.Г. Метрология и стандартизация. Учебное пособие.- 2004.

4.Болтон. Карманный справочник инженера метролога.- 2002.

5.Харт З. Введение в измерительную технику.- 1998.

6.Димов Ю.В. Метрология, стандартизация и сертификация. Учебник.- 2010.

1.Методы и средства измерений электрических величин………………… ………..1

1.1.Меры электрических величин…………………………… …… …………..1

1.2.Электроизмерительные приборы……………………………… … ……….4

1.3.Осциллографы. Цифровые приборы………………………………… ……..10

1.4.Аналоговые измерительные преобразователи……………………… ……..14

1.5.Измерение электрических величин…………………………………… ……17

2.Измерения магнитных величин…………………………………………………......25

3.Измерение неэлектрических величин……………………………………… ……...28

3.1.Измерительные преобразователи………………………………………… ...28

3.2.Измерения длин и углов………………………………………… …………..35

3.3.Измерение температуры………………………………………… …………..39

3.4.Измерение давления……………………………………… … ………….…46

3.5.Измерение силы и массы……………………………………………………..50

3.6.Измерение расхода………………………………………………………… .55

Силой называется всякое воздействие на данное тело, сообщающее ему ускорение или вызывающее его деформацию. Сила - векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел. Сила характ-ся числовым значением, направлением в пространстве и точкой приложения. За единицу силы в системе СИ принят ньютон (Н). Ньютон – сила, которая придает массе 1 кг в направлении действия этой силы ускорение 1м/с 2 .

Измерения силы осуществляют по средствам динамометров, силоизмерительных машин и прессов, а также непосредственным нагружением при помощи грузов и гирь.

Динамометры – приборы, изм-щие силу упругости. Изготавл-ся трёх типов:

· пружинные;

· гидравлические;

· электрические.

По способу регистрации измеряемых усилий динамометры делятся на:

· указывающие , применяют главным образом для измерений статических усилий, возникающих в конструкциях, установленных на стендах при приложении к ним внешних сил и для измерения силы тяги при плавном передвижении изделия;

· считающие и пишущие динамометры, регистрирующие переменные усилия, применяют чаще всего при определении силы тяги паровозов и тракторов, т.к. вследствие сильной тряски и неизбежных рывков при ускорении их движения, а также неравномерности нагрузок изделия создаются переменные усилия.

Наибольшее распространение имеют динамометры общего назначения пружинные указывающие. Основные параметры динамометров общего назначения пружинных со шкальным отсчетным устройством, предназначенные для измерений статических растягивающих усилий, устанавливает ГОСТ 13837.

Измерение погрешности СИ должно определяться двумя способами:

· расчетным;

· по таблицам приложения ОСТ 1.00380.

59. Измерение температуры. Температура – один из параметров состояния в-ва, она определяет тепловое состояние тела и направления теплопередачи. За единицу измерения в системе СИ принят К. Т измеряют с помощью СИ, использ. различные термометрические свойства жидкости, газов и тв. тел. К ним относятся: термометры расширения, манометрические, сопротивления с логометрами или мостами, термопласт. Т измеряют контактным(более точный) и бесконтактным методом(служит для измерения высокой Т, где невозможно измерить контактным методом и не требуется высокой точности). Термометрический преобразователь – измерительный преобразователь температуры, предназн. для выработки сигнала измеренной информации в форме удобной для передачи, обработки или хранения, но не поддающейся непосредственному восприятию наблюдателю(термометры сопротивления, термопара, телескоп радиационного пирометра. Вторичный измерительный преобразователь – СИ преобразующее выходной сигнал термометр-го преобразователя в численную величину(логометры, мосты, милливольтметры).



· Приборы контроля имеют 4 разновидности:

· 1.показывающие – предусматривающие визуальный отчет показаний.

· 2.регистрирующие – имеющие устройства регистрации резул-тов контроля.

· 3.самопишущие – приборы с автоматической записью резул-тов контроля в виде функций времени.

· 4.индикаторные – сигнализация достижения заданной температуры.

· Наиболее распространенные термометры расширения:

· 1.термометры жидкостные, стеклянные – используют термометрическое св-во теплового расширения.

· 2.термометры контактные, ртутные и терморегулятор – приборы предназначенные для смыкания и разъединения цепи эл. тока, с целью поддержания заданной Т или сигнализации о ее достижении. Принцип действия основан на способности ртути проводить эл. ток.

60. Жидкостные, стеклянные терм-ры используют термометр-е свойства теплового расширения. Действие термометров основано на различии коэф-тов теплового расширения термометрического в-ва и оболочки, в которой она находится(термом-го стекла). Т следует определять по величине видимого объема термомет-го вещ-ва и отсчитывать по высоте уровня в капиллярной трубке. Достоинства: простота, достаточно высокая точность, широкий интервал измерения. Недостатки: плохая видимость шкалы, невозможность автомат-й записи показаний, невозможность передачи показаний на расстояние. Основные технические хар-ки – конструктивная особенность жидкостных, стеклянных терм-ов ГОСТ28498.

· Манометрические термометры - простые механические приборы прямого измерения, предназначенные для дистанционного измерения Т газов, паров и жидкостей в стационарных условиях. Принцип действия основан на свойстве газов и жидкостей изменять давление при изменении измеряемой Т. Достоинства: сравнительная простота конструкции и применения, возможность дистанционного измерения Т и автоматическая запись показаний. Недостатки: невысокая точность измерений, небольшое расстояние дистанционной передачи показаний (не более 60м), трудность ремонта при разгерметизации измерительной системы.

61. Термопреобразователь сопротивления ТС – термоприёмник, в к-ром в качестве термометрического св-ва использовано изменение эл-кого сопротивления чувств-ого элемента в зав-ти от изменения его Т, т.е. посредством термометра сопротивления колебания Т преобразуются в эквивалентное изменение эл.сопротивления проводника. Чувств. элемент термопреобразователя изготавливают чаще всего из медной либо платиновой проволоки (термометры для длительного измерения Т в пределах от -50 до +200С для Cu;-200 - +1100С для Pt). ТС в отличие от жидкостных стеклянных и манометрических термометров не явл-ся прибором, показывающим Т, а служит лишь датчиком. ТС работы с втор. Измерит. приборами (логометрами и мостами, измеряющие сопротивления термометра и показывающие соответствующую Т среды). Осн. Треб-ия, обеспечивающие правильность выбора и эксплуатации ТС: соответствие измеряемым Т пределам измерений ТС; допустимая погрешность измерений; правильный выбор места установки ТПС; соответствие прочности материала арматуры условиям эксплуатации; правильный выбор длины монтажной части ПС. Логометры – приборы для измерения Т с помощью ТС. Логометры построены по принципу сравнения сил токов в цепях термометра и пост. сопротивления. Логометры наиболее целесообразно применять при измерении низких минусовых (от -100С) и невысоких плюсовых (до 500С) Т. Конструктивные особенности, диапазоны измерений, классы точности устанавливает ГОСТ 9736. Термоэлектрические преобразователи ТЭП – термоприёмники, принцип действия которых основан на возникновении ЭДС в цепи, составленной из разнородных проводников при нарушении теплового равновесия. Величина термоЭДС зависит от материала электродов и разности температур горячего и холодного спаев (раб. и свободный концы термопары). Раб. конец термопары должен быть помещён в измеряемую среду, а свободные концы присоединяют к втор. прибору. Термопары работают в комплекте с пирометрическими или цифровыми приборами, вольтметрами, потенциометрами. Термопара уступает термометру сопротивления в точности. Преимущества: дешёвые, просты в устройстве, надёжны, исключительно неиннерционны. Номинальные статические хар-ки термопар отражены в ГОСТ Р 8.8585. Пирометрический милливольтметр (ГОСТ 9736)– втор. прибор для измерения величин термоЭДС, создаваемой термоэлектрическим термометром. Они могут иметь разнообразные шкалы для всех станд градуировок термопары в пределах их применения вплоть до температур, допустимых для кратковременных измерений. Автоматические потенциометры приборы, служащие для измерения термоЭДС компенсационным методом без ручных манипуляций. Предназначены для измерений, записи и регулирования температуры с повышенной точностью. Потенциометры работают в комплекте с термопарами и радиационными потенциометрами станд. градуировок; могут работать и с другими датчиками, явл-ся ист-ми ЭДС или напряжения. Потенциометры могут производить автоматические измер-ия и запись показаний темп-ры в нескольких точках (одной, трех, 6, 12 и 24) и имеет автоматическую компенсацию темп-ры холодных спаев термопары. Пирометры излучения – приборы для измерения теплового состояния тел, нагретых до высокой темп-ры. Принцип работы основан на улавливании лучистой энергии нагретого тела с пом. оптической сис-мы. Разделяют на: пирометры частичного излучения (оптические) и полного излучения (радиационные). Оптические пирометр прибор для измерений яркостных темп-р, накопленных телом в одном узком интервале длин волн видимого спектра. Чувств. элементом при этом явл-ся глаз наблюдателя. Принцип действия основан на уравнивании яркостей изображения накаленного объекта с яркостью эталонного источника – пирометрической лампочкой. Радиационный пирометр – прибор бесконтактного опред-ия темп-ры по рез-там измерения их теплового излучения во всем спектре длин волн. Комплект радиационного пирометра состоит из 2 блоков. Один из них – телескоп радиационного пирометра, вкл-ий в себя приемник излучения, второй блок – показывающий (регистрирующий) измерит. прибор. Пирометры излучения примен-ся: при необх-ти обеспечения высокого быстродействия или если контакт термопреобразователя с объектом измерения не допустим в связи с искажением им температурного поля.